
P1761

Doctor Esquerdo, 46 28007 Madrid, Spain Phone: +34-915867163 Fax: +34-915044906 jguineaortega@yahoo.es

Activity of SCY-078 against *Candida* spp. obtained by EUCAST and CLSI procedures

L.J. Marcos-Zambrano^{1,2}, M Gómez-Perosanz^{1,2}, P. Escribano^{1,2,3}, E. Bouza^{1,2,3,4}, J. Guinea^{1,2,3,4}

¹ Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain. ² Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. ³ CIBER Enfermedades Respiratorias-CIBERES (CBo6/o6/oo58), Madrid, Spain. 4 Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid

CONCLUSION

- SCY-078 is a promising drug with high in vitro antifungal activity and other yeast isolates causing fungemia.
- CLSI and EUCAST standard procedures were comparable antifungal susceptibility testing of this compound.

This study was partially financed by FIS (PI14/00740) and by Scynexis

POSE								
ailable 1,3-beta 178 yeasts isol arañón hospita	ates d al in vs to	SCY-078 and micafungin showed potent demonstrated significantly lower MIC value vs 9.33 mg/L, respectively) by EUCAST, an to SCY-078 for the remaining species (MIC isolates showed the highest and lowest sus						
DS	0	CY-078 and micafungin show bserved both in the overall show the served a mean of 15 fold (ra	susceptik	oility				
ia	О	Individual mutations in <i>fks</i> genes had diffe on the activity of SCY-078 compared to m (Table 2).						
		We did not find cross-resistan fluconazole-resistant isolates of isolates was higher than t (Table 1). Table 1. Antifungal activity (Gl	5. The ge the over	eome all M				
		isolates studied by CLSI-M27A						
				CAST				
			3 and EU	CAST				
		isolates studied by CLSI-M27A3	3 and EUG	CAST				
		isolates studied by CLSI-M27A3	S and EUG Fluce	CAST onaz				
		isolates studied by CLSI-M27A3 CLSI M27-A3 C. albicans (55)	S and EUG Fluce CLSI 0.178	CAST onaz				
		CLSI M27-A3 C. albicans (55) C. parapsilosis (33)	3 and EU Fluce 0.178 0.422	CAST onaz EU(
		CLSI M27-A3 C. albicans (55) C. parapsilosis (33) C. glabrata (31)	3 and EU Fluce 0.178 0.422 2.287	CAST onaz EU(0. 7.				
		CLSI M27-A3 CLSI M27-A3 C. albicans (55) C. parapsilosis (33) C. glabrata (31) C. tropicalis (8)	S and EUG Fluce 0.178 0.422 2.287 0.25	CAST onaz 60. 0. 7. 0.				
ivity against C		CLSI M27-A3 C. albicans (55) C. parapsilosis (33) C. glabrata (31) C. tropicalis (8) C. krusei (12)	S and EUG Fluce 0.178 0.422 2.287 0.25 10.07	CAST onaz EU(0. 7. 0. 22				
	Candida	CLSI M27-A3 C. albicans (55) C. parapsilosis (33) C. glabrata (31) C. tropicalis (8) C. krusei (12) Other Candida spp. (26)	3 and EUG Fluce 0.178 0.422 2.287 0.25 10.07 1.026	CAST DNAZ EU(0. 7. 0. 22 1.				
ivity against C le and suital	<i>Candida</i>	CLSI M27-A3 CLSI M27-A3 C. albicans (55) C. parapsilosis (33) C. glabrata (31) C. tropicalis (8) C. krusei (12) Other Candida spp. (26) Non-Candida (13)	Fluce CLSI 0.178 0.422 0.25 10.07 10.026 10.8866 19.5	CAST CAST CONTRACT CONTRACTOR CON				

RESULTS

in vitro activity against the isolates as shown by the low MIC values obtained by CLSI and EUCAST, respectively (Table 1). SYC-078 ves than micafungin against *C. parapsilosis* (GM values 0.206 mg/L vs 0.458 mg/L respectively) and non-*Candida* isolates (GM values 4.66 mg/L nd this phenomenon is also observed by CLSI methodology. By contrast, micafungin demonstrated significantly lower MIC values compared C range 0.008 – 0.053 mg/L vs 0.029 – 0.556 mg/L, respectively), regardless of the procedure used (Table 1). C. albicans and non-Candida sceptibility, respectively, to both SCY-078 and micafungin.

ted activity against the Candida isolates with mutations in the fks genes compared to wild-type isolates (Table 2). However, differences were / of the isolates and in the impact of *fks* mutations between both drugs. The MIC₅₀ of micafungin against echinocandin-resistant isolates compared to the wild-type isolates. By contrast, the individual MICs of SCY-078 only increased by 2 fold (range 1 - 32).

rent effects on the two compounds activity. While the F641S mutation in the one C. albicans isolate tested appeared to have a greater effect nicafungin, among the C. glabrata isolates, mutations in fks genes had a greater impact on the activity of micafungin compared to SCY-078

n SCY-078 and fluconazole in the panel of etric mean MIC of SCY-078 against this set AIC due to the high proportion of C. krusei

zole, micafungin, and SCY-078 against the 178 ΓEDef 7.3 procedures.

zole	Mic	afungin	SCY-078		
CAST	CLSI EUCAST		CLSI	EUCAST	
.273	0.008	0.016	0.029	0.065	
0.5	0.458	0.656	0.206	0.266	
.153	0.011	0.030	0.168	0.365	
.353	0.035	0.051	0.066	0.353	
2.627	0.051	0.06	0.395	0.445	
.205	0.036	0.053	0.369	0.556	
0.88	9.33	11.61	4.66	7.19	
24.6	0.043	0.049	0.291	0.423	
.714	0.169	0.734	0.338	0.793	

Table 2. MICs of micafungin and SCY-078 against the *Candida* isolates with *fks* mutations.

			CLSI				EUCAST			
Species	Mutation	Region	Micaf	ungin	SC	1-078	Micaf	ungin	SC	Y-078
		_	MIC	Fold-∆	MIC	Fold-∆	MIC	Fold-∆	MIC	Fold-∆
C. albicans	F641S	HS1 <i>fks1</i>	0.125	17.8	1	32.2	1	66.6	2	32
C. glabrata	delF649	HS1 <i>fks2</i>	0.03	4.3	0.25	8	1	66.6	1	4
C. glabrata	delF658	HS1 <i>fks2</i>	0.125	17.8	2	16	2	133	4	16
C. glabrata	S663P / D666Y	HS1 <i>fks2</i>	0.125	17.8	0.125	1	2	133	0.5	2
C. glabrata	delF658	HS1 <i>fks2</i>	0.125	17.8	1	4	1	66.6	4	16
C. glabrata	S663Y	HS1 <i>fks2</i>	0.5	71.4	0.5	2	0.5	33.3	0.25	1
C. tropicalis	S645F	HS1 <i>fks1</i>	2	133.3	0.06	1	2	64.5	0.25	1
C. tropicalis	F641L	HS1 <i>fks1</i>	0.125	8.3	0.125	2	0.125	4	0.5	2
C. tropicalis	R647G	HS1 <i>fks1</i>	0.125	8.3	0.25	4	0.125	4	0.25	1

Fold- Δ = Ratio of each individual MIC/MIC₅₀ of the overall wild-type isolates of each species.

The MIC for all the species were lower by CLSI than for EUCAST P<0.001. Overall essential agreement between CLSI and EUCAST was 90.3%. However, the agreement was higher for C. albicans, C. parapsilosis and non-Candida than for C. tropicalis and other Candida spp. The essential agreement is shown in Table 3.

Table 3. Essential agreement. Percentage of strains in which the MIC obtained by EUCAST differed ± 1 , and $\pm 2 \log_2 dilutions$ over the MIC obtained by CLSI									
	C. albicans	C. parapsilosis	C. glabrata	C. tropicalis	C. krusei	Candida spp.	Other yeasts		
Within ±1 log2	72.7	97	54.9	50	91.7	69.2	61.5		
Within ±2 log2	94.5	97	87.2	50	91.7	84.5	69.2		

Table 3. Essential agreement. Percentage of strains in which the MIC obtained by EUCAST differed ± 1 , and $\pm 2 \log_2 dilutions$ over the MIC obtained by CLSI									
	C. albicans	C. parapsilosis	C. glabrata	C. tropicalis C	. krusei	Candida spp.	Other yeasts		
Within ±1 log2	72.7	97	54.9	50	91.7	69.2	61.5		
Within ±2 log2	94.5	97	87.2	50	91.7	84.5	69.2		