Combination Therapy with SCY-078 and Isavuconazole for Treatment of Experimental Invasive Pulmonary Aspergillosis

Vidmantas Petraitis, MD

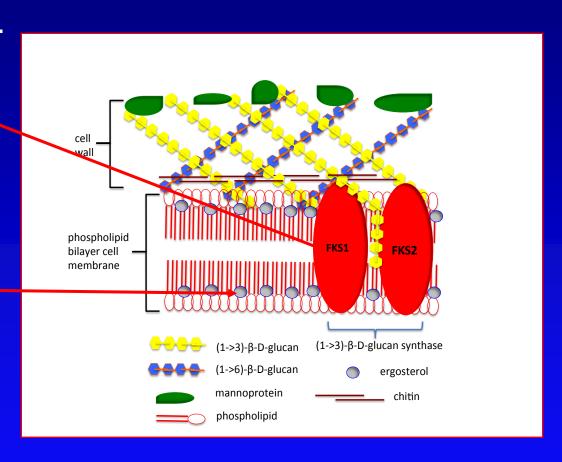
Assistant Professor of Research in Medicine

Transplant-Oncology Infectious Diseases Program
Weill Cornell Medicine of Cornell University
New York, NY

Invasive Aspergillosis

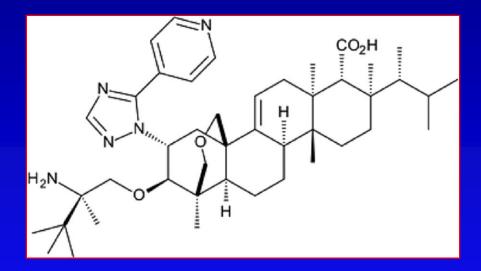
Major cause of morbidity and mortality in patients with

- Profound / prolonged neutropenia (< 500 μL / > 10 d)
- Qualitative defects of phagocytic functions
 - Glucocorticosteroid therapy
 - Graft-vs-host disease
 - Acute graft rejection
 - Chronic granulomatous disease

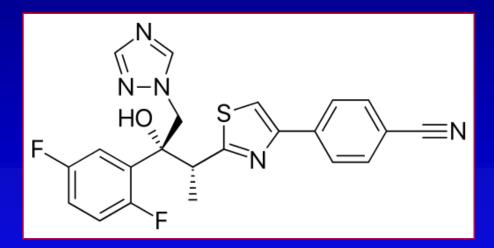

Current Treatment of Invasive Pulmonary Aspergillosis

- Mortality rates of IPA in cancer patients have varied between 13% and 100% depending on the recovery from neutropenia.
- Current treatment of IPA immunosuppressed hosts relies on the administration of antifungal triazoles; however, the overall therapeutic response rate is estimated to be approximately 50-70%.
- Clearly new strategies are needed for more effective treatment of IPA.

Key Targets of Therapy for Aspergillosis


Echinocandins inhibit (1→3)β-D-glucan synthesis in the fungal cell wall

Triazoles act by inhibition of cytochrome p450 14-α-demethylase, blocking synthesis of cell membranestabilizing ergosterol


SCY-078

- SCY-078 is a semisynthetic triterpenoid derivative of the natural product enfumafungin, a potent inhibitor of fungal (1→3)-β-D-glucan synthases
- This compound is structurally different from the echinocandins
- Represents a new class of antifungal agent suitable for oral and IV administration
- Even though it has the same molecular target as the echinocandins, it is structurally distinct and potentially effective against echinocandin-resistant strains

Isavuconazole

- Active agent Isavuconazole
- Inhibits fungal cell membrane biosynthesis through inhibition of ergosterol formation at the level of lanosterol C14demethylase
- Wide in vitro and in vivo antifungal activity, including Candida spp. and Aspergillus spp.

Combination Therapy of IPA

 Based on previous combination studies between echinocandins and antifungal triazoles we hypothesized that this combination may result in a synergistic interaction in vivo.


Combination Therapy of IPA

 We, therefore studied the *in vivo* efficacy of the new extended-spectrum antifungal SCY-078 in combination with isavuconazole in treatment of experimental IPA in persistently neutropenic rabbits.

 The data from this study would provide an experimental rationale and establish a foundation for further clinical evaluation.

Well Described Persistently Neutropenic Rabbit Model of IPA

- Female New Zealand white rabbits weighing 2.8 to 3.6 kg at the time of inoculation were used in this study.
- Atraumatic vascular access was established in each rabbit by the surgical placement of a Silastic tunneled central venous catheter.

Materials and Methods

- Aspergillus fumigatus NIH isolate 4215 (ATCC No. MYA-1163)
- Endotracheal inoculation, which was performed on day 2 of the experiments
- Inoculum of 1.25 x 10⁸ conidia of *A. fumigatus* (250 to 350 μL)
- Induction and maintenance of neutropenia
 - Cytarabine (Ara-C) 525 mg/m² (days 1-5)
 - Cytarabine (Ara-C) 484 mg/m² (days 8-9,13-14)
 - Methylprednisolone 5 mg/kg (days 1 and 2)

Materials and Methods

Antibiotics

- ceftazidime (75 mg/kg given IV twice daily)
- gentamicin (5 mg/kg given IV every other day)
- vancomycin (15 mg/kg given IV daily)
- were administered daily from day 4 of chemotherapy until study completion for prevention of opportunistic bacterial infections during neutropenia.
- All rabbits received 50 mg/L of vancomycin in drinking water to prevent antibiotic associated diarrhea due to Clostridium spiriforme.

White blood cell counts

total leukocyte counts were measured by Coulter counter twice weekly.

Experimental Study Groups

Untreated Controls (UC)

SCY-078: - 2.5 mg/kg/day IV (SCY2.5)

- 7.5 mg/kg/day IV (SCY7.5)

Isavuconazole (ISA): - 40 mg/kg/day PO (ISA40)

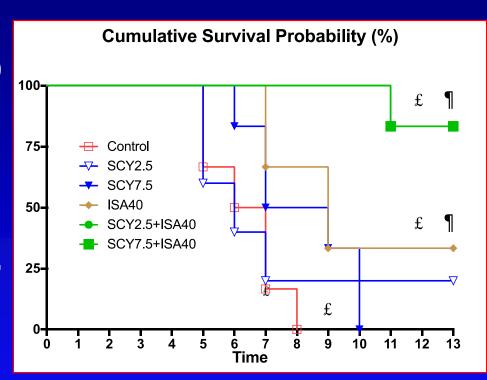
Combination: - SCY2.5+ISA40

- SCY7.5+ISA40

Antifungal therapy was initiated 24 h after inoculation and continued throughout the course of the experiment for 12 days.

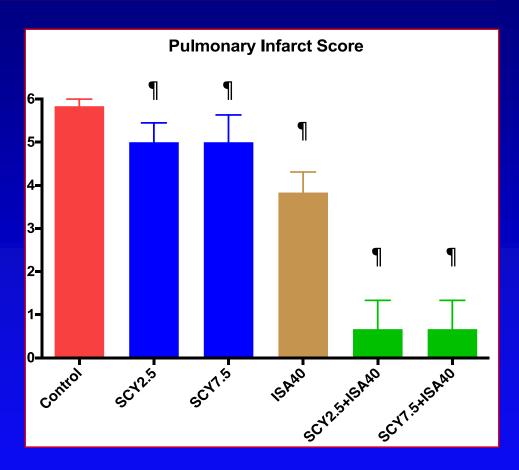
Panel of Outcome Variables

- Survival
- Pulmonary lesion scores
- Lung weights
- Residual fungal burden (quantitative cultures)
- Serum galactomannan antigenemia (GMI) detected by the double sandwich enzymelinked immunosorbent assay (ELISA)
- (1→3)-β-D-glucan levels detected by Limulus amebocyte lysate assay

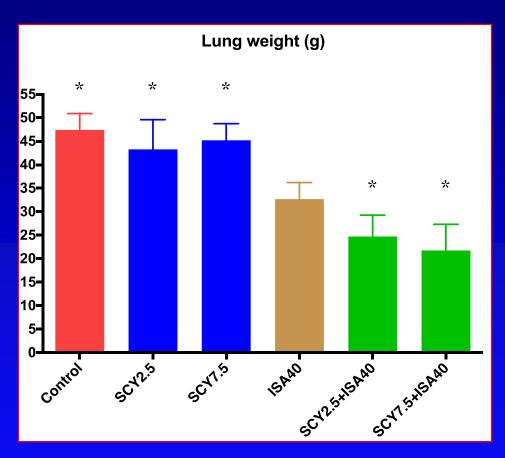

Statistical Analysis

- Comparisons between the groups were performed by analysis of variance (ANOVA) with Bonferroni's correction for multiple comparisons or the Mann-Whitney U-test, as appropriate.
- Survival was plotted by Kaplan-Meier analysis.
 Differences in survival of treatment groups and untreated controls were analyzed by log-rank test.

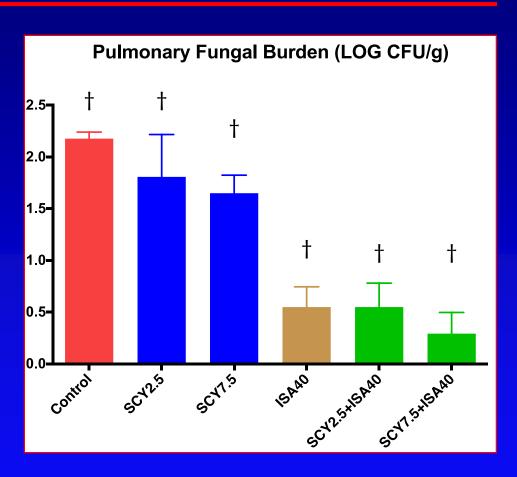
Results


Survival Probability

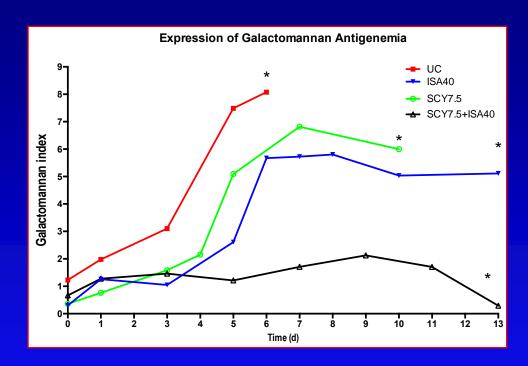
- ¶, p<0.05, prolonged survival in SCY2.5+ISA40 and SCY7.5+ISA40 -treated rabbits in comparison to that of single therapy of SCY2.5, SCY7.5, and ISA40
- £, p<0.01, prolonged survival of rabbits treated with SCY2.5+ISA40, SCY7.5+ISA40, ISA40 alone in comparison to that of UC


Pulmonary Infarct Score

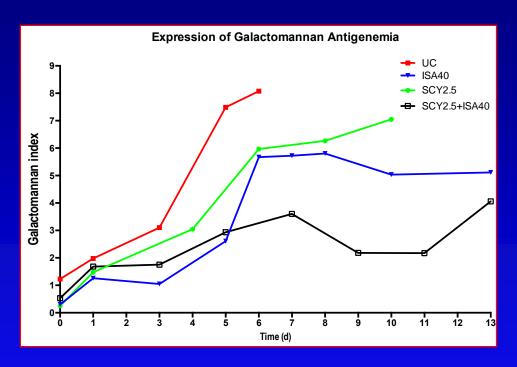
 ¶, p<0.01, decreased infarct scores in SCY2.5+ISA40 and SCY7.5+ISA40 -treated rabbits in comparison to that of single therapy of SCY2.5, SCY7.5, and ISA40


Lung Weight

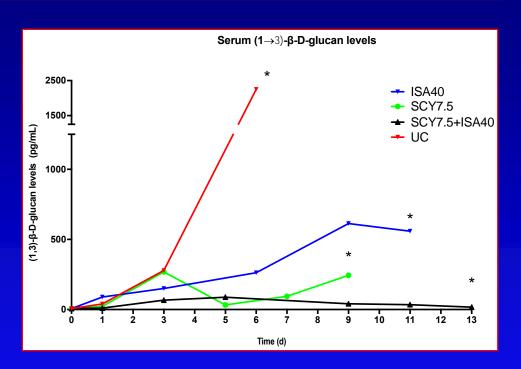
 *, p<0.05, decreased lung weights in SCY2.5+ISA40 and SCY7.5+ISA40 -treated rabbits in comparison to that of single therapy of SCY2.5, SCY7.5, and untreated controls


Residual Fungal Burden (log CFU/G)

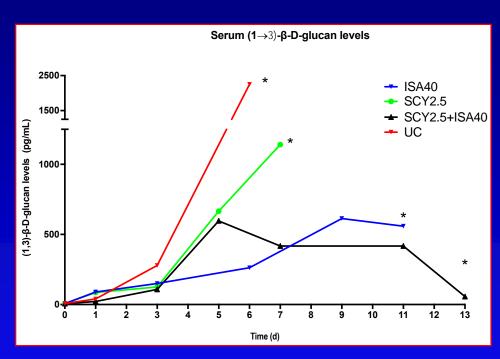
 †, p<0.01, decreased residual fungal burden in SCY2.5+ISA40 and SCY7.5+ISA40, and ISA40 treated rabbits in comparison to that of single therapy of SCY2.5, SCY7.5, and untreated controls


Expression of Galactomannan Antigenemia

 *p<0.05; lower GMI in rabbits treated with combination regiment of SCY7.5+ISA40 in comparison to that of single therapy of SCY7.5, ISA40, and untreated controls


Expression of Galactomannan Antigenemia

 There was lower GMI in rabbits treated with combination regiment of SCY2.5+ISA40, but did not reach significant differences in comparison to that of single drug therapy


Serum $(1\rightarrow 3)$ - β -D-glucan Levels

*p<0.05; decrease of serum
 (1→3)-β-D-glucan levels in
 SCY7.5+ISA40, SCY7.5, or
 ISA40 -treated rabbits in
 comparison to that of untreated
 controls

Serum $(1\rightarrow 3)$ - β -D-glucan Levels

*p<0.05; decrease of serum
 (1→3)-β-D-glucan levels in
 rabbits treated with combination
 regiment of SCY2.5+ISA40 in
 comparison to that of single
 therapy of SCY2.5 and
 untreated controls

Conclusions

- Rabbits treated with the combination of SCY plus isavuconazole demonstrated
 - prolonged survival,
 - decreased pulmonary injury,
 - reduction of residual fungal burden, and
 - lower serum GMI
 in comparison to those of single therapy of SCY and/or isavuconazole
- These findings provide an experimental rationale and establish a foundation for clinical evaluation of the combination of SCY-078 and isavuconazole for treatment of IPA

Acknowledgments

Ruta Petraitiene

Aspasia Katragkou

Bo Bo W. Maung

Thomas J. Walsh

Povilas Kavaliauskas

Rita Planciuniene

Marius Virgalis

Katyna Borroto-Esoda

Stephen Barat

David Angulo

The study was supported by a collaborative research and development agreement with SCYNEXIS

Thank You!