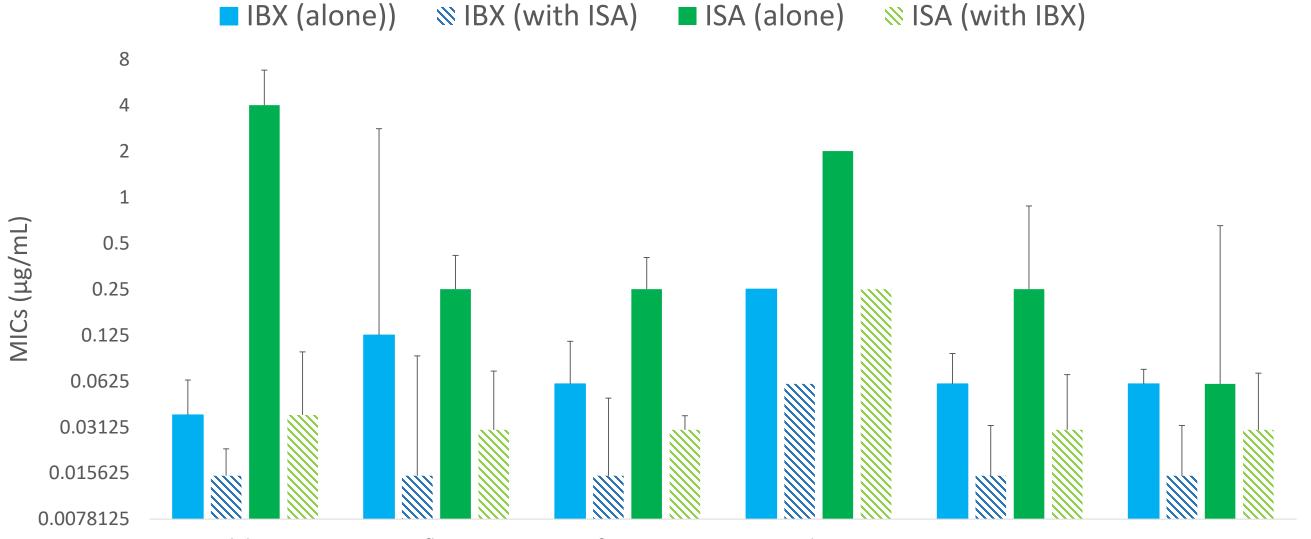


In vitro Evaluation of Combination of Ibrexafungerp and Azoles against *Aspergillus* spp. # 20 Isolated from Lung Transplant Recipients

Vidya Jagadeesan,¹ Eileen Driscoll,¹ Binghua Hao,¹ Stephen Barat,² Katyna Borroto-Esoda,² Tom Chen,²David Angulo,² Cornelius J Clancy, ¹ M. Hong Nguyen¹ ¹University of Pittsburgh, ²SCYNEXIS, Inc.


INTRODUCTION

 Aspergillosis is the most common opportunistic mould infection. Over the past 2 decades, there has been a surge in non-Aspergillus fumigatus (non-Af) spp causing infections.

 This change in epidemiology might be partially attributable to increased use of broad-spectrum antifungal agents. Indeed, breakthrough infections while on azole prophylaxis or treatment have been attributed to azole-resistant non-Af species, and mortality associated with these infections is high.

Figure 2. Effect of combination of IBX and an azole on individual drug MIC

RESULTS

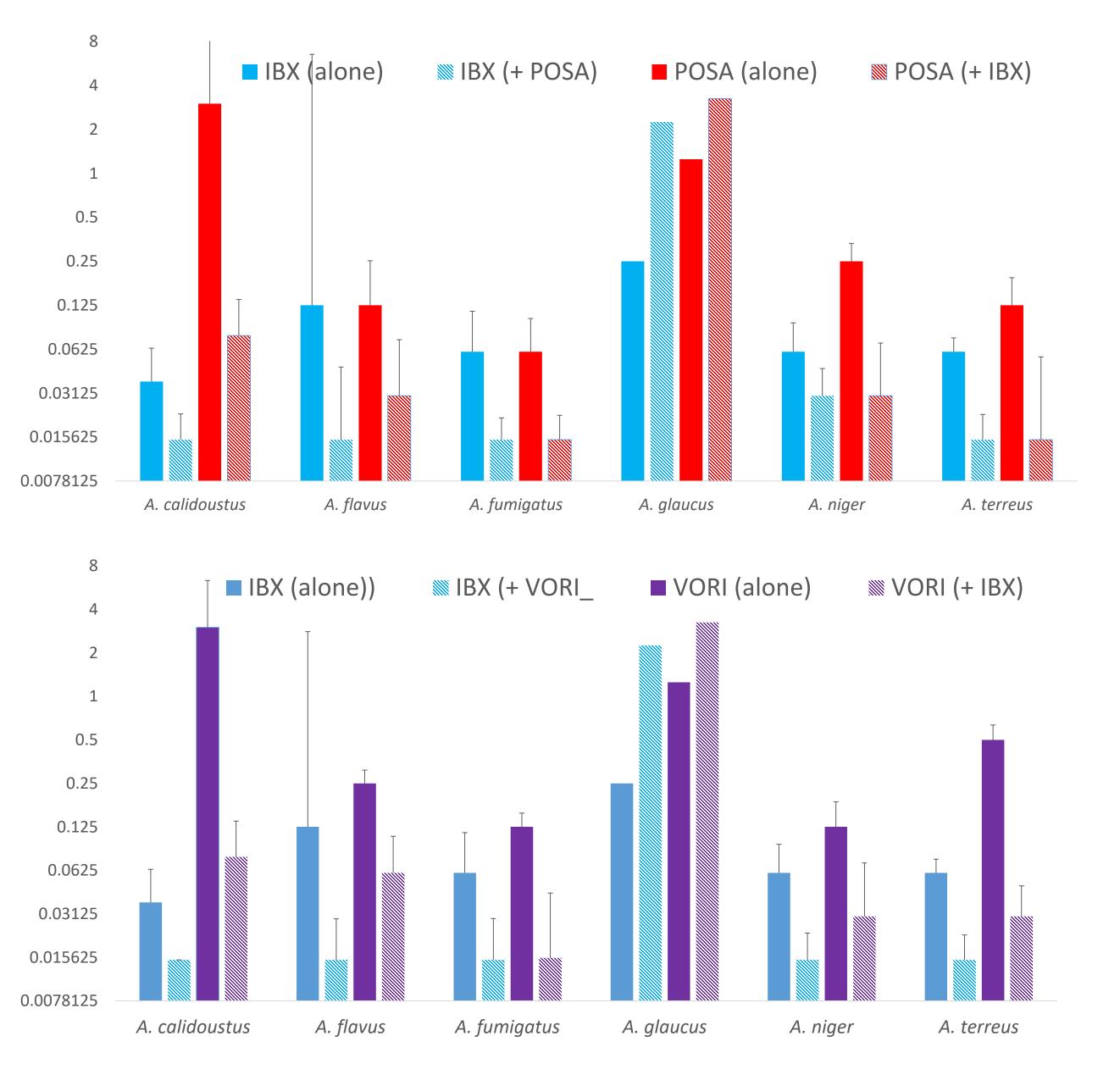
Note: Median MIC of azoles were reduced by \geq 4fold when combined with IBX. Median IBX MICs for *Aspergillus* spp. other than *A. calidoustus* were also reduced by \geq 4-fold when combined with an azole. Median IBX MIC for *A. calidoustus* was too low to assess synergy.

Ibrexafungerp (IBX) is a novel class of glucan synthase inhibitor that has broad activity against *Candida, Aspergillus* and *Pneumocysitis*Currently in a phase 2 clinical study in invasive pulmonary aspergillosis in combination with voriconazole

(NCT03672292)

GOAL

• To evaluate the *in vitro* activity of IBX, either singly or in combination with isavuconazole (ISA), posaconazole (POSA) or voriconazole (VOR), against 50 *Aspergillus* isolates recovered from lung transplant recipients.


METHODS

- MICs of antifungals were determined according to CLSI M38-A2 standard.
- Concentrations tested were from 0.015 to 16 μg/mL.
 For combination testing, fractional inhibitory concentration index determined by checkerboard method
 - FICi = MIC_{IBX} (combo)/MIC_{IBX} (single) + MIC_{AZOLE}(combo)/

SUMMARY OF DATA:

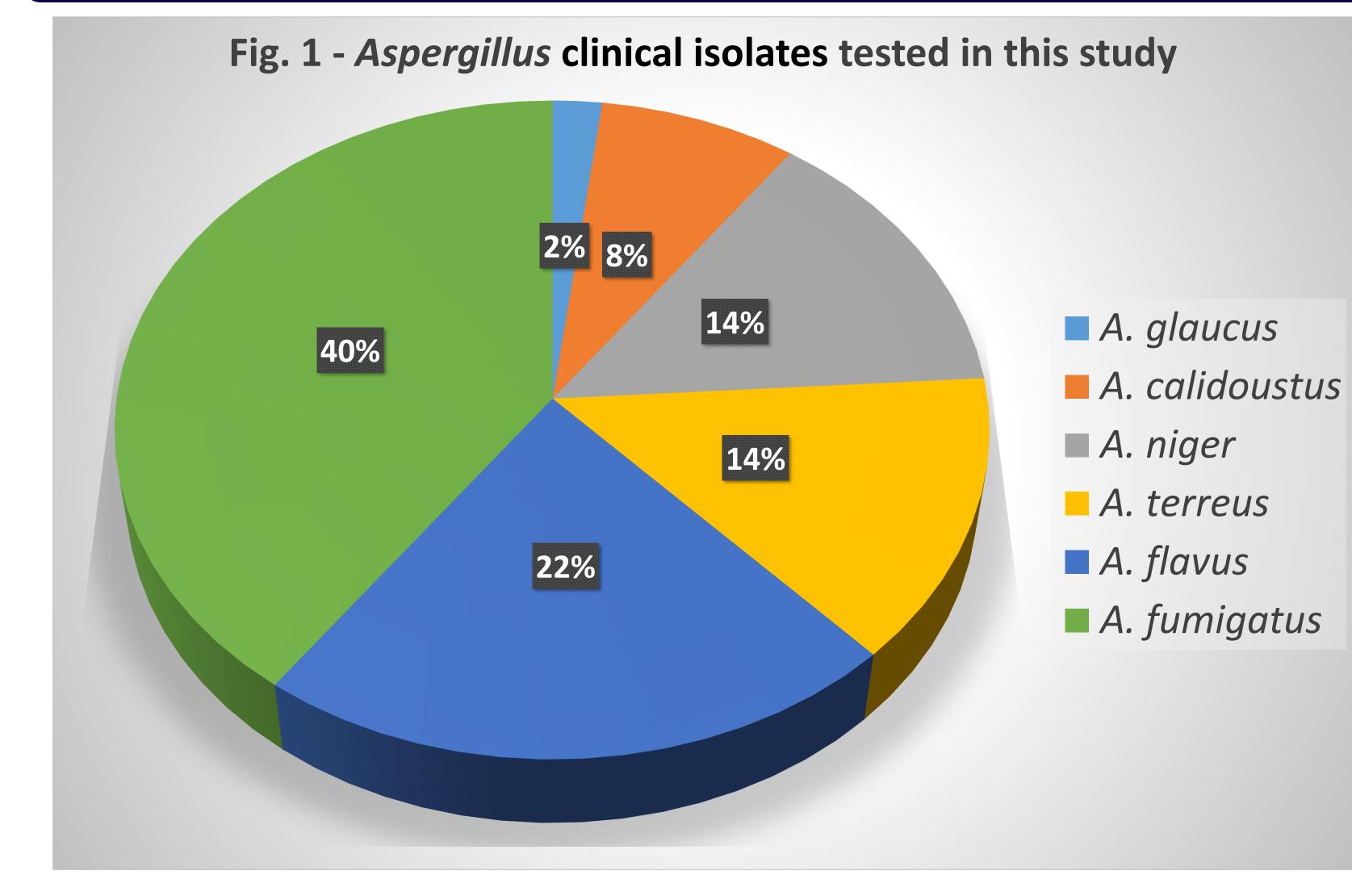

- 12, 14, 1 and 5 isolates exhibited IBX, ISA and POSA MIC <0.06 μg/mL, thus FICi cannot be determined.
- Synergy was observed with
 - IBX+ISA in 62%
 - IBX+POSA in 54%
 - IBX+VOR in 53%
- Among isolates exhibiting either IBX or azole MICs <0.06 μg/mL, the beneficial effect of the combination was still observed:
 - the MIC of the ISA, POSA and VORI was reduced by ≥ 4-fold in 75%, 50% and 75% of the isolates, respectively, when tested in combination with IBX

Figure 3. Interaction between IBX and VORI vs 5 A. calidoustus isolates

MIC_{AZOLE}(single)) was used to classify the interaction between 2 drugs as synergy (FICi<0.5), antagonism (FICi>4) or indifference (FICi 0.5-4)

RESULTS

1A. VORI MICs for *A. calidoustus* isolates when VORI was given alone (left) and after combination with IBX (right). Note that 4 isolates exhibited VORI MIC $\geq 2 \mu g/mL$

1B. IBX MICs for *A. calidoustus* when IBX was given alone (left panel) and after combination with VORI (right panel). Note that the interaction between IBX and VORI was synergistic in 80% (4/5) of isolates tested

Note: For *A. calidoustus,* ISA, POSA and VOR MICs in combination with IBX decreased from the range of 4-16 µg/mL to ≤0.0015-0.125 µg/mL for all azoles

1A.	1B.
Aspergillus calidoustus VORI MIC in	A. calidoustus IBX MIC in
VORI MIC (single) combination with IBX	IBX MIC (single) combination with VORI
16	16
8	8
4	4
2	2
1	1
0.5 0.5	0.5
0.25	0.25 0.25

Table 1. MICs of IBX, ISA, POSA and VORI against clinical *Aspergillus* isolates

	Number of isolates	IBX		ISA		POSA		VORI	
		MIC ₅₀	Range	MIC ₅₀	Range	MIC ₅₀	Range	MIC ₅₀	Range
А.									
calidoustus	4	0.0375	0.015-0.06	4	0.25-16	3	0.25-16	3	0.25-8
					0.125-		0.125-		
A. flavus	11	0.125	0.03-16	0.25	0.5	0.125	0.5	0.25	0.125-0.25
А.			0.015-				0.03-		
fumigatus	20	0.06	0.125	0.25	0.06-0.5	0.06	0.125	0.125	0.06-0.125
A. glaucus	1	0.25		2		0.25		0.25	
							0.06-		
A. niger	7	0.06	0.06-0.125	0.25	0.125-2	0.25	0.25	0.125	0.125-0.25
							0.06-		
A. terreus	7	0.06	0.03-0.06	0.06	0.25-2	0.125	0.25	0.5	0.25-0.5

CONCLUSIONS

- The *in vitro* results with combinations of IBX and azoles against Aspergillus spp. are encouraging.
 - Synergy was achieved against 53 to 62% of isolates.
 - Antagonism was not observed for this combination
 - The effect of IBX on reducing azole MICs to low range for azole-resistant *A. calidoustus* and *A. terreus* is particularly noteworthy
- Animal model and clinical studies are warranted to further elucidate the potential utility of IBX-azole combination therapy
- Such data are especially important in lung transplant recipients since azoles are the agents used most commonly as antifungal prophylaxis, but IFI and breakthrough IFIs are ~8-12% and ~3-5%, respectively
 - Mortality rates among lung transplant recipients with invasive aspergillosis are high despite azole treatment