Ibrexafungerp Demonstrates Potent and Consistent In Vitro Activity Against >400 Global Candida auris Isolates, Including Isolates with Elevated MIC's to Echinocandins

BACKGROUND

Candida auris is an urgent global threat; a pathogen associated with high mortality (up to 60%), multi-drug resistance, the ability to spread from person-to-person and surface-to-person, presenting high risk for outbreaks in healthcare facilities. Echinocandins are the first-line treatment for patients with C. auris infections given the high degree of resistance of this pathogen to azoles and polyenes. Ibrexafungerp is a novel IV/oral glucan synthase inhibitor (triterpenoid) antifungal with activity against Candida, Aspergillus and Pneumocystis, in Phase 3 development. Given the potent activity of ibrexafungerp against Candida spp., SCYNEXIS has embarked on a development program to understand the effectiveness of its compound against C. auris. We will present the activity of ibrexafungerp against a compilation of >400 C. auris isolates from four studies, including 32 C. auris isolates with elevated MIC's to the echinocandins.

METHODS

In vitro MIC data for ibrexafungerp against Candida auris isolates were compiled from across 4 independent studies (see References) with the majority of isolates originating in the US and India. In vitro susceptibility was determined by broth micro-dilution using CLSI (M27-S3) and/or EUCAST methods. Overall, 445 isolates from around the globe were evaluated including 32 isolates with elevated MIC values to one or more echinocandins.

REFERENCES

¹Berkow, E.L. et al., Antimicrob Agents Chemother., 2017 Jun 27 ²Larkin, E. et al., Antimicrob Agents Chemother., 2017 Apr 24 ³Zhu, YZ. et al., Int J Antimicrob Agents., 2020 Feb 21 ⁴Arendrup, MC, et al., Antimicrob Agents Chemother., 2020 Feb 21

N. Azie, K. Borroto-Esoda, D. Angulo SCYNEXIS, Inc., Jersey City, United States of America

The ibrexafungerp MIC₉₀ value against the 445 clinical isolates was 1 μ g/mL; the modal and MIC₅₀ values were 0.5 μ g/mL each. These results were consistent across the four studies and no differences were observed between MIC results generated using CLSI or EUCAST methods.

Table 1. Ibrexafungerp MIC (mg/mL) distribution against all C. auris isolates

lbrexafungerp MIC's (μg/ml)	Study #1 (N=107) ¹ Berkow	Study #2 (N=16) ² Larkin	Study #3 (N=200) ³ Zhu	Study #4 (N=122) ⁴ Arendrup	Overall (N=445)
MIC ₅₀	1	1	0.5	0.5	0.5
MIC ₉₀	1	1	1	1	1
Mode	1	1	0.5	0.5	0.5
Range	0.0625 – 2	0.5 – 2	0.0625 - 8	0.0625 - 2	0.625 - 8

MIC values were similar among the 32 isolates with elevated MIC values to one or more of the echinocandins as compared to other isolates with modal, MIC₅₀ and MIC₉₀ of 0.5, 0.5, and 1 μ g/mL, respectively. Only 1/32 of the echinocandin-resistant isolates had reduced sensitivity to ibrexafungerp (defined as > 2-dilutions vs the mode). This isolate was pan-resistant with elevated MICs to all three echinocandins (MICs = 4 μ g/mL) as well as fluconazole (MIC >256 mg/mL) and amphotericin B (MIC = 1 μ g/mL).

Table 2. Ibrexafungerp MIC (mg/mL) distribution against ECH-R C. auris isolates

lbrexafungerp MIC's (μg/ml)	ECH-
MIC ₉₀	
MIC ₅₀	
Mode	
Range	0.0

RESULTS

R (N=32) 0.5 0.5 625 - 8

CONCLUSIONS

This data demonstrates that ibrexafungerp possesses potent and consistent in vitro activity against Candida auris and remains highly active against C. auris isolates with high MIC's to the echinocandins.

Chasing the Sun

24 hours of COVID-19 followed by IDWeek