The new triterpenoid antifungal SCY-247 retained activity against most echinocandin and fluconazole-resistant Candida spp isolates: reduced susceptibility against C. glabrata isolates showing substitutions at the first amino acid in hotspot 1 FKS2 gene

Celia Sánchez-Martínez^{1,2}, Pilar Escribano^{1,2,3}, Patricia Muñoz^{1,2,4,5}, Jesús Guinea^{1,2,3,5} ¹Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain ²Instituto de Investigación sanitaria Gregorio Marañón, Madrid, Spain ³Faculty of Health Science - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain ⁴Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid Madrid, Spain ⁵CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain

Background

- IV/oral SCY-247 is a second-generation fungerp antifungal, a new family of beta-d-glucan synthase inhibitors
- Its in vitro activity against Candida resistant isolates is mostly unknown

The aim of this study was to assess in vitro antifungal activity profile of SCY-247 against a collection of Spanish antifungal-

resistant Candida spp isolates

Materials and Methods

We studied 161 clinical isolates collected from 16 centres from Madrid (Spain) showing different antifungal resistance profiles as follows:

Fluconazole- resistant (n=97)	• C. parapsilosis showing ERG11 gene mutations	SCY-247 activity was studied by the
Fluconazole- susceptible and echinocandin- resistant (n=41)	 C. glabrata (n=35); FK51²⁶³³⁷ (n=1); FK52²⁶⁵⁵⁸ (n=10), FK52²⁶⁵⁶³ (n=10), FK52²⁶⁵⁵⁸ (n=4), FK52⁰⁶⁵⁶⁶ (n=3), FK52⁸¹³⁷⁸⁵ (n=2), FK52^{2652W} (n=1), FK52²⁰⁵⁷¹⁵¹ (n=1), and FK51 and FK52 genes wild-type (n=2) C. albicans (n=5); FK51⁵⁶⁵⁸⁷ (n=4), FK51⁸¹³⁶¹⁴ (n=1) C. tropicalis FK51⁵⁶⁵⁸⁷⁴ (n=4) C. parapsilosis (n=1) 	 EUCAST E.Def 7.4 procedure Minimum inhibitory concentration (MIC) was defined as the lowest concentration reaching 50% of
Fluconazole and echinocandin- resistant (n=23)	 C. albicans (n=3): FKS1^{R647G} (n=2) and FKS1^{R13611} (n=1) C. glabrata (n=15): FKS1^{r629F} (n=1); FKS2^{5663P} (n=7), FKS2^{F7065} (n=2), FKS2^{F6595} (n=2), FKS2^{F6595} (n=1), FKS2^{E6554} (n=1), FKS2^{E6554} (n=1) C. krusei FKS1^{D662P} (n=1) 	fungal growth inhibition compared to the drug-free control

Results

- concentrations between 0.004 mg/L and 4 mg/L (Table)
- SCY-247 MIC values against most Candida spp isolates spanned The single echinocandin-resistant C. krusei isolate (FKS1^{D662Y}) showed a SCY-247 MIC = 1 mg/L
- had MIC values similar to those obtained against echinocandinsusceptible isolates (Poster P2966)
- With the exception of C. glabrata, almost all resistant isolates All echinocandin-resistant and FKS1-mutant C. albicans isolates showed SCY-247 MIC values ranging from ≤0.004 mg/L to 0.25 mg/L (Table and Figure)
- 247 in vitro activity

Table. Isolates tested and SCY-247 MIC distributions

• The presence of fluconazole resistance did not affect the SCY- • Four C. tropicalis isolates were echinocandin-resistant and FKS1mutant and showed SCY-247 MIC values ranging from 0.25 mg/L to 4 mg/L (Table and Figure):

Species (no. of isolatos)	MIC (in mg/L)												
species (no. or isolates)	≤0.004	0.008	0.016	0.03	0.06	0.125	0.25	0.5	1	2	4	8	≥16
C. albicans (n=8)	2	0	0	1	2	1	2	0	0	0	0	0	-
C. glabrata (n=50)	0	0	0	3	2	10	15	1	3	8	8	0	-
C. parapsilosis complex (n=98)	0	0	0	1	0	2	8	74	9	4	0	0	-
C. tropicalis (n=4)	0	0	0	0	0	0	1	0	2	0	1	0	-
C. krusei (n=1)	0	0	0	0	0	0	0	0	1	0	0	0	-

Cells with the "-" symbol indicate non-tested antifungal concentrations; MIC values above the highest MIC values found against echinocandin-susceptible isolates are depicted in bold (Poster P2966)

- MIC values $\leq 0.5 \text{ mg/L}$ (Table)
- As to the echinocandin-resistant *C. glabrata* isolates (Figure):
 - Two isolates had FKS1 and FKS2 genes wild type sequences and SCY-247 MIC values between 0.06 mg/L and 0.125 mg/L, respectively
 - Two isolates had only FKS1 gene substitutions (FKS1^{S629F} and FKS1^{P633T}) and SCY-247 MIC values = 0.25 mg/L
- Echinocandin-susceptible C. alabrata isolates showed SCY-247
 The remaining isolates had FKS2 gene substitutions, and SCY-247 MIC values were impacted by the position of the amino acid substitution (Figure):
 - Substitutions at FKS2^{E655A}, FKS2^{W715L} and the first position of the HS1 (FKS2^{F659S} and FKS2^{ΔF659}) correlated with SCY-247 MIC values > 0.5 mg/L
 - Substitutions at FKS2^{D666}, FKS2^{L662W}, FKS2^{L664R}, FKS2^{R1378S} and *FKS2^{S663P}* led mostly to SCY-247 MIC values \leq 0.5 mg/L

- SCY-247 retained in vitro activity against antifungal-resistant Candida spp. isolates, including echinocandin-resistant isolates
- However, SCY-247 showed MIC values > 0.5 mg/L against C. glabrata isolates harbouring amino acid substitutions at the first amino acid of the FKS2 gene Hot Spot 1 Hospital General Universitario TI G-M

ESCMID Global

The study was supported by grant PI22/00005 and Scynexis Ltd. The study was co-funded by the European Regional Development Fund (FEDER) 'A way of making Europe

P2924