# Three Months of SCY-247 EUCAST MIC Testing: Uniform Activity against *Candida* Species and no Cross-Resistance to Echinocandins

SIAILINS SERUM INSTITUT



P052

Karin Meinike Jørgensen<sup>1</sup>, Nissrine Abou-Chakra<sup>1</sup>, Karen Marie Thyssen Astvad<sup>1</sup> and Maiken Cavling Arendrup<sup>1,2,3</sup>

<sup>1</sup>Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark, <sup>2</sup>Dept. Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark, <sup>3</sup>Dept. of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark

### Objectives

SCY-247 is a second-generation, IV/oral, novel antifungal agent of the triterpenoid class (1) targeting the glucan synthase enzyme via a site interaction distinct from that of the echinocandins.

Inclusion of SCY-247 in our routine MIC determination to generate MICs for future ECOFF setting.

We present here the first three months of EUCAST SCY-247 MICs and compare these to 1) anidulafungin and micafungin MICs tested in parallel, and 2) previously published ibrexafungerp MICs (2).

#### Materials & methods

MICs of SCY-247 were determined according to the EUCAST E.Def 7.4 reference method.

#### Susceptibility testing

- 239 Candida isolates from Q1 of 2025.
- Thermo Scientific™ Nunc™ MicroWell™ 96-Well, Nunclon Delta-Treated, Flat-Bottom Microplate (Fisher Scientific, cat. no. 161093).
- RPMI medium (SSI Diagnostica, cat. no. 60984).
- SCY-247 (Scynexis, New Jersey, USA)
- Anidulafungin and micafungin (Molcan Corporation, Toronto, Ontario, Canada).

#### Data analysis and sequencing

- Modal MICs (mg/L) for species with ≥11 isolates.
- SCY-247 MICs compared to previously generated and published ibrexafungerp MICs (2).
- Isolates defined as non-wild-type to SCY-247 if the MIC was ≥ 3 two-fold dilutions above the modal MIC.
- EUCAST breakpoints applied for interpretation of anidulafungin and micafungin MICs.
- Isolates resistant or non-wild-type to ≥1 agent underwent *fks* sequencing.

#### Results

#### **MIC** distribution

The SCY-247 MIC distributions are Gaussian and narrow, spanning 2-4 two-fold dilutions (Table 1).

For the most prevalent *Candida* species

- the MIC ranges are identical for *C. albicans* and *C. glabrata* (0.06-0.5 mg/L), for *C. dubliniensis* and *C. parapsilosis* (0.25-0.5 mg/L), and for *C. krusei* and *C. tropicalis* (0.25-1 mg/L).
- the modal MICs fall within a  $\pm 1$  two-fold dilution (0.125-0.5 mg/L).

#### Comparison to ibrexafungerp

**SCY-247** in FKS mutants

For our present data, a more uniform activity profile is seen for SCY-247 compared to ibrexafungerp (Table 1).

SCY-247 modal MICs appear slightly higher (by 2 two-fold dilutions) than those for ibrexafungerp for *C. albicans* and *C. dubliniensis*, comparable to *C. krusei*, *C. parapsilosis*, and *C. tropicalis* and slightly lower for *C. glabrata* (by 1 two-fold dilution), though data are limited.

The C. glabrata and C. tropicalis isolates with FKS hot

spot alterations were regarded SCY-247 wild-type with

MICs 1-2 two-fold dilution steps above the modal MICs

(Table 1 and 2). In comparison, anidulafungin and

micafungin MICs were 2-5 and 1-6 two-fold dilution

steps, respectively, above the modal MIC for the same

## **Table 1.** SCY-247 and ibrexafungerp (ibrexa) EUCAST MICs against isolates received at the SSI during Q1 2025 (SCY-247, N = 239) and 2020-2021 (ibrexafungerp, N = 1852), respectively. Modal MICs are highlighted in bold.

| Species           | Agent   | <b>N</b> - | MIC (mg/L) |      |            |           |      |           |    |   |   |   |
|-------------------|---------|------------|------------|------|------------|-----------|------|-----------|----|---|---|---|
| Species           |         |            | 0.016      | 0.03 | 0.06       | 0.125     | 0.25 | 0.5       | 1  | 2 | 4 | 8 |
| C. albicans       | SCY-247 | 103        |            |      | 13         | 37        | 50   | 3         |    |   |   |   |
|                   | Ibrexa  | 896        | 5          | 91   | <b>574</b> | 213       | 10   |           | 2  | 1 |   |   |
| C. dubliniensis   | SCY-247 | 14         |            |      |            |           | 6    | 8         |    |   |   |   |
|                   | Ibrexa  | 117        |            |      | 15         | 64        | 33   | 4         |    | 1 |   |   |
| C. glabrata       | SCY-247 | 58         |            |      | 9          | <b>37</b> | 11   | 1         |    |   |   |   |
|                   | Ibrexa  | 475        |            |      |            | 5         | 319  | 148       | 2  | 1 |   |   |
| C. krusei         | SCY-247 | 21         |            |      |            |           | 5    | 14        | 2  |   |   |   |
|                   | Ibrexa  | 110        |            |      |            |           | 14   | 74        | 22 |   |   |   |
| C. parapsilosis   | SCY-247 | 7          |            |      |            |           | 1    | 6         |    |   |   |   |
|                   | Ibrexa  | 78         |            |      |            | 1         | 23   | 44        | 2  | 1 | 6 | 1 |
| C. tropicalis     | SCY-247 | 17         |            |      |            |           | 5    | 11        | 1  |   |   |   |
|                   | Ibrexa  | 146        |            |      |            | 8         | 44   | <b>75</b> | 16 |   | 2 | 1 |
| C. guilliermondii | SCY-247 | 2          |            |      |            |           |      | 1         | 1  |   |   |   |
|                   | Ibrexa  | 4          |            |      |            |           |      | 1         | 3  |   |   |   |
| C. kefyr          | SCY-247 | 2          |            |      |            |           | 1    | 1         |    |   |   |   |
|                   | Ibrexa  | 5          |            |      |            |           | 3    | 2         |    |   |   |   |
| C. lusitaniae     | SCY-247 | 7          |            |      |            |           | 1    | 1         | 5  |   |   |   |
|                   | Ibrexa  | 9          |            |      |            |           |      |           | 4  | 5 |   |   |
| C. metapsilosis   | SCY-247 | 1          |            |      |            |           | 1    |           |    |   |   |   |
|                   | Ibrexa  | 1          |            |      |            | 1         |      |           |    |   |   |   |
| S. cerevisiae     | SCY-247 | 4          |            |      |            | 1         | 3    |           |    |   |   |   |
|                   | Ibrexa  | 11         |            |      |            | 1         | 2    | 8         |    |   |   |   |

**Table 2**. Comparison of FKS amino acid sequences and MICs (mg/L) (MIC elevation above the modal MIC\*) for isolates non-wild type to SCY-247 or echinocandin agents.

| Species       | Fks alteration | Hot spot   | SCY-247  | Anidulafungin | Micafungin   |
|---------------|----------------|------------|----------|---------------|--------------|
| C. glabrata   | F659S          | FKS2 HS1   | 0.5 (2)  | 0.125 (2)     | 0.03 (1-2)*  |
| C. glabrata   | S663P          | FKS2 HS1   | 0.25 (1) | 0.5 (4)       | 0.5 (5-6)*   |
| C. glabrata   | D666G          | FKS2 HS1   | 0.25 (1) | 0.25 (3)      | 0.016 (0-1)* |
| C. lusitaniae | M689I          | Outside HS | 1 (0)    | 0.5 (3-4)*    | 0.5 (3)      |
| C. tropicalis | S654P          | FKS1 HS1   | 1 (1)    | 0.5 (5)       | 1 (6)        |

\*For anidulafungin, the modal MIC against *C. lusitaniae* straddled 0.03 and 0.06; and for micafungin, the modal MIC against *C. glabrata* straddled 0.008 and 0.016 mg/L. Therefore, a 2 two-fold dilution range is given for the determined MIC elevation. HS: hot spot.

Conclusion

isolates (Table 2).

- SCY-247 displayed uniform activity against the 11 *Candida* species included with no indication of cross-resistance to the echinocandins.
- However, more isolates, particularly of the rarer species, and more isolates with Fks alterations need to be investigated before firm conclusions can be drawn.

## References

- 1. Chu S, Long L, McCormick TS, et al. 2021. A second-generation fungerp analog, SCY-247, shows potent in vivo activity in a murine model of hematogenously disseminated *Candida albicans*. Antimicrob Agents Chemother. 2021, 65:e01989-20.
- 2. Jørgensen KM, Astvad KMT, Hare RK *et al.* 2022. EUCAST Ibrexafungerp MICs and Wild-Type Upper Limits for Contemporary Danish Yeast Isolates. J. Fungi, 8, 1106.

## Acknowledgements:

The study was supported by an unrestricted grant from Scynexis



Contact: MACA@ssi.dk or KMJ@ssi.dk